Following the Dust Trail...

On March 13, 1986, the ESA probe, Giotto, had a close encounter - a close encounter with a visitor from the Oort cloud spewing 18 metric tons of gas every second and pouring 30 metric tons of dust from its nucleus. It's name? Comet Halley... and Giotto's mission was obtain color photographs of the nucleus, determine the elemental and isotopic composition of volatile components in the cometary coma, study the parent molecules, and help us to understand the physical and chemical processes that occur in the cometary atmosphere and ionosphere. Giotto would be the first to investigate the macroscopic systems of plasma flows resulting from the cometary-solar wind interaction. High on its list of priorities was measuring the gas production rate and determining the elemental and isotopic composition of the dust particles. Critical to the scientific investigation was the dust flux - its size and mass distribution and the crucial dust-to-gas ratio. As the on-board cameras imaged the nucleus from 596 km away - determining its shape and size - it was also monitoring structures in the dust coma and studying the gas with both neutral and ion mass spectrometers. As science suspected, the Giotto mission found the gas to be predominantly water, but it contained carbon monoxide, carbon dioxide, various hydrocarbons, as well as a trace of iron and sodium.

We now know Comet Halley consisted of the most primitive material known to us in the solar system. With the exception of nitrogen, the light elements shown were quite similar in abundance as that of our own Sun. Several thousand dust particles were determined to be hydrogen, carbon, nitrogen, oxygen - as well as mineral forming elements such as sodium, magnesium, silicon, calcium and iron. Because the lighter elements were discovered far away from the nucleus, we knew they were not cometary ice particles. From our studies of the chemistry of interstellar gas surrounding stars, we've learned how carbon chain molecules react to elements such as nitrogen, oxygen, and in a very small part, hydrogen. In the extreme cold of space, they can polymerize - changing the molecular arrangement of these compounds to form new. They would have the same percentage composition of the original, but a greater molecular weight and different properties. But what are those properties?

Thanks to some very accurate information from the probe's close encounter with Comet Halley, Ranjan Gupta of the Inter-University Centre of Astronomy and Astrophysics (IUCAA) and his collaborators (see the scientific paper.) have made some very interesting findings with cometary dust composition and scattering properties. Since the beginning missions to comets were "fly-bys", all the material captured was analysed in-situ. This type of analysis showed that cometary materials are generally a mixture of silicates and some form of carbon formed in the matrix. Once the water evaporates, the sizes of these grains range from sub-micron to micron and are highly porous in nature - containing non-spherical and irregular shapes.

According to Gupta et al., most of the early models of light scattering from such grains were "based on solid spheres with conventional Mie theory and only in the recent years - when the space missions provided strong evidences against this - have new models have been evolved where non-spherical and porous grains have been used to reproduce the observed scattering and the linear polarization, produced by the comet dust tail. The dust tail varies in the position as the comet approaches or recedes from the the Sun. As Gupta explains, "An important feature of this polarization curve versus the scattering angle (referred to the sun-earth-comet geometry) is that there is some degree of negative polarization." ; assumed to be arising from some special types of particles . At present , there are no satisfactory models to explain negative polarization .

Gupta et. al. have used a modified DDA (discrete dipole approximation) - where each dust grain is assumed to be an array of dipoles. By using a model of composite grains with a matrix of graphite and silicate spheroids, a very specific grain size range may be required to explain the observed properties in cometary dust. "However, our model is also unable to reproduce the negative branch of polarization which is observed in some comets. Not all comets show this phenomenon in the NIR band of 2.2 microns."

These composite grain models developed by Gupta et. al. will need to be refined further to explain the negative polarization branch, as well as the amount of polarization in various wavelengths. In this case, it is a color effect with higher polarization in red than green light. More extensive laboratory simulations of composite grains are upcoming and "The study of their light scattering properties will help in refining such models."

Mankind's successful beginnings at following this cometary dust trail started with Halley. Vega 1, Vega 2 and Giotto provided the models needed to better research equipment. In May 2000, Drs. Krueger and Kissel of Max Planck Institute published their findings as "First Direct Chemical Analysis of Interstellar Dust". According to the English translation of their work found in Cosmic Ancestry, the world's leading authority on cometary dust - Jochen Kissel says, "Three of our dust impact mass spectrometers (PIA on board GIOTTO, and PUMA-1 and -2 onboard VEGA-1 and -2) encountered Comet Halley. With those we were able to determine the elementary composition of the cometary dust. Molecular information, however, was only marginal." Deep Space 1's close encounter with Comet Borrelly returned the best images and other science data received so far. Despite the mission's many problems, Deep Space 1 proved to be a total success. According to Dr. Mark Rayman's December 18, 2001 Mission Log, "The wealth of science and engineering data returned by this mission will be analyzed and used for years to come. The testing of high risk, advanced technologies means that many important future missions that otherwise would have been unaffordable or even impossible now are within our grasp. And as all macroscopic readers know, the rich scientific harvest from comet Borrelly is providing scientists fascinating new insights into these important members of the solar system family." Now Stardust has taken our investigations just one step further. Collecting these primitive particles from Comet Wild 2, the dust grains will be stored safely in aerogel for study upon the probe's return. NASA's Donald Brownlee says, "Comet dust will also be studied in real time by a time-of-flight mass spectrometer derived from the PIA instrument carried to comet Halley on the Giotto mission. This instrument will provide data on the organic particle materials that may not survive aerogel capture, and it will provide an invaluable data set that can be used to evaluate the diversity among comets by comparison with Halley dust data recorded with the same technique." These very particles might contain an answer, explaining how interstellar dust and comets may have seeded life on Earth by providing the physical and chemical elements crucial to its development. According to Browlee, "Stardust captured thousands of comet particles that will be returned to Earth for analysis, in intimate detail, by researchers around the world." These "mystery dust" samples will allow us to look back some 4.5 billion years ago. They will teach us about fundamental nature of interstellar grains and other solid materials - the very "building blocks" of our own solar system. Many of atoms found in our Earth and in our own bodies contain the same materials as released by comets.

And it just keeps getting better. Now en route to Comet Comet 67 P/Churyumov- Gerasimenko, ESA's Rosetta will delve deeper into the mystery of comets as it attempts a successful landing on the surface. According to ESA, equipment such as "Grain Impact Analyser and Dust Accumulator (GIADA) will measure the number, mass, momentum, and velocity distribution of dust grains coming from the comet nucleus and from other directions (reflected by solar radiation pressure) - while Micro-Imaging Dust Analysis System (MIDAS) will study the dust environment around the comet. It will provide information on particle population, size, volume, and shape." A single cometary particle could be a composite of millions of individual interstellar dust grains, allowing us new insight on galactic and nebular processes increasing our understanding of both comets and stars. Like producing amino acids in laboratory conditions that simulate what may occur in a comet, most of our information has been indirectly obtained. By understanding polarization, wavelength absorption, scattering properties, and the shape of a silicate feature, we gain valuable knowledge into the physical properties of what we have yet to explore. Rosetta will carry a lander to the a comet's nucleus and deploy it on the surface. The lander science will focus on in-situ study of the composition and structure of the nucleus - an unparalleled study of cometary material and reveal much about how the solar system formed.

On July 4, 2005, the Deep Impact mission will arrive at Comet Temple 1. Buried beneath its surface may be even more answers. In an effort to form a new crater on the comet's surface, a 370 kg mass will be released to impact Tempel 1 sunlit side. The result will be the fresh ejection of ice and dust particles and will further our understanding about comets by observing the changes in activity. The fly-by craft will monitor structure and composition of the crater's interior - relaying so much data that it will have to send it back to Earth to be coordinated. The impact will hopefully go well beneath the surface of the comet, revealing its pristine materials - untouched since its formation. What lay beneath the surface? Let's hope spectrocospy shows carbon, hydrogen, nitrogen and oxygen. These produce organic molecules, starting with the basic hydrocarbons, such as methane. Will these processes have increased in complexity to create polymers? Will we find the basis for carbohydrates, saccharides, lipids, glycerides, proteins and enzymes?

The answers are in the future...